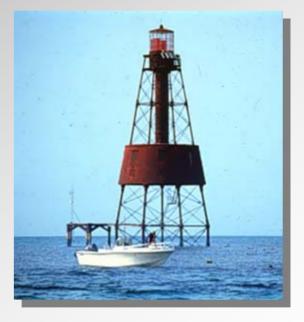
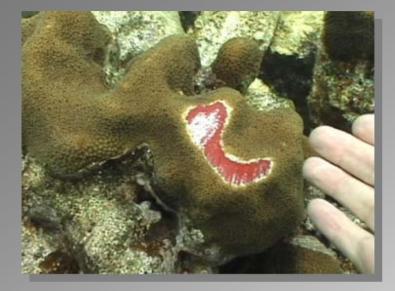

U.S. Coral Reef Task Force 10/24/06: Restoration Planning in the Florida Keys National Marine Sanctuary

Bill Goodwin Sanctuary Resources Manager FKNMS


2900 square nautical miles of Sanctuary 500-600 reported vessel groundings annually ≈15% occur in coral reef-type substrate

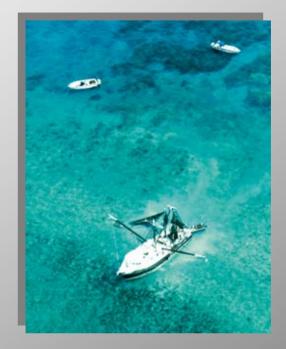
Small vessels make small injuries...



Typical small vessel injuries:

Mounding (head-type) Corals

Typical Small Vessel Injuries:


Branching Corals

Large vessels make large injuries...

Spur and groove coral formation flattened by large commercial vessel

How are reports of problems received and handled ?

How FKNMS receives notification:

- FFWCC dispatch in majority of cases
- Occasionally USCG notifies
- FPS and NPS, in certain circumstances
- Directly from salvors responding to vessel in distress
- Charter boat operators (diving, fishing, tour, etc.)
- Private individuals

How FKNMS handles problem:

Depending on the nature of the injury (size, severity, other circumstances, FKNMS Assessment Biologists and resource managers will respond immediately or visit the injury site as soon as possible (with orientation from responding FFWCC LEO) to conduct injury assessment

Is coordination with other agencies required,

and if so, how is it handled?

Coordination with other agencies:

- In every Sanctuary resource injury situation, coordination with FFWCC
- In some cases, coordination w/ USCG (especially oil spill or threat thereof)
- Occasionally, coordination with adjacent National and State Parks

Coordination handled through:

- Communication
- Playing nice with others

The need for injury assessments on coral reefs

- Documentation of impacts to marine resources for MPA management purposes (eg., natural vs. human perturbations and identifying areas for additional/better channel marking)
- Critical for determination of extent of new impacts in grounding "hotspots" (superimposed injuries)
- Support for law enforcement/legal actions
- Quantification of injury for primary restoration planning
- Baseline data for development of future monitoring efforts

3 types of action that can be taken against a responsible party:

Enforcement Actions (civil penalties) -

 Summary settlements - ≤1m² coral or ≤ 10m² seagrass

• Section 307's - formulaic, based on civil penalty schedule

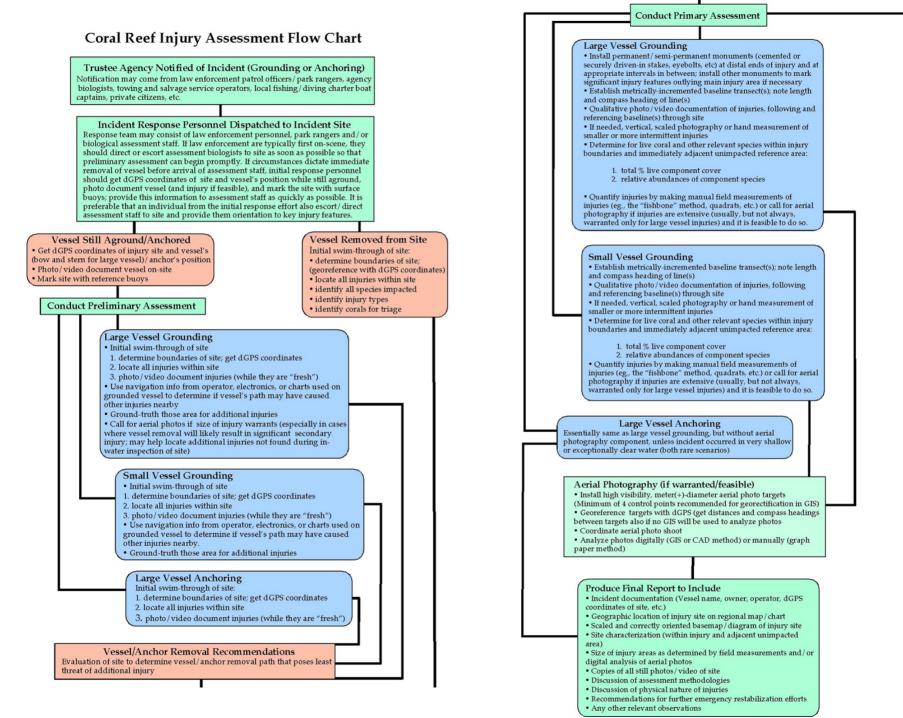
Natural Resource Damage Action (NRDA) claims

NRDA Claim

Whenever a grounding occurs within a national marine sanctuary, NOAA can seek damages to cover response, injury and damage assessment, restoration and replacement of the damaged habitat or acquisition of equivalent habitat, and compensation of the public for the value of the damaged resources until full recovery.

Primary goal of the NOAA/FDEP Coral 312 program:

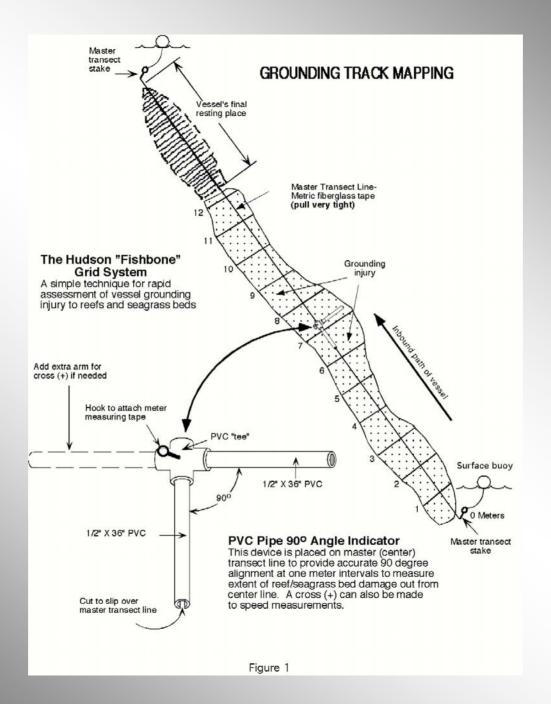
To prepare rapid, cost-effective, litigation-quality claims for injuries to coral resources resulting from vessel groundings and other mechanical injuries, and to implement the restoration and monitoring of coral reef ecosystem injuries

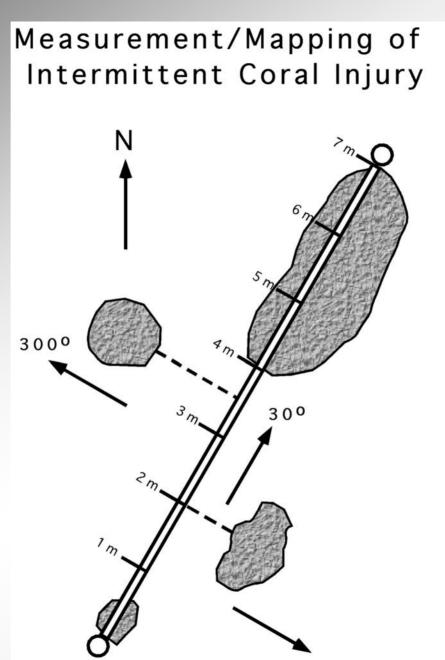

The Coral 312 Program uses an interdisciplinary team of biologists, economists, lawyers, and resource managers to assess and recover natural resource damages from the vessel owner/operator who cause these injuries. The funds collected are then used to implement the restoration of and monitor restored coral reef ecosystems

The Coral 312 Program assessment protocol includes the following steps:

• Field assessment

Application of injury recovery trajectories

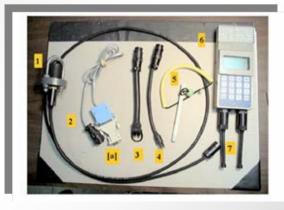

• Application of an ecological service-scaling model (HEA)



Manual Assessment Techniques • Meter Таре • Compass Photo/Video Master transect stake GROUNDING TRACK MAPPING essel's final resting place Master Transect Line-Metric fiberglass tape (pull very tight) • GPS The Hudson "Fishbone" Grounding Grid System iniury A simple technique for rapid assessment of vessel grounding injury to reefs and seagrass beds • Quadrat Add extra arm for cross (+) if needed Data Hook to attach meter measuring tape PVC "tee Surface buoy 1/2" X 36" PVC Pc 0 Meters 1/2" X 36" PVC PVC Pipe 90º Angle Indicator Master transect This device is placed on master (center) transect line to provide accurate 90 degree stake alignment at one meter intervals to measure extent of reef/seagrass bed damage out from Species Area % Cover center line. A cross (+) can also be made Cut to slip over to speed measurements. Milegora complanata 0.208 m² 20.8 സ master transect line Pontes astreoides 0.063 m² 6.3 Palvthoa caribaeorun 0.074 m² 7.4 Agaricia agaricites 0.007 m² 0.7 3 - 10- -0.006 m² 0.6 14 Gorgonian (sp. 7) Figure 1


Buoys and Stakes for Temporary, Long Term and Permanent Site Marking

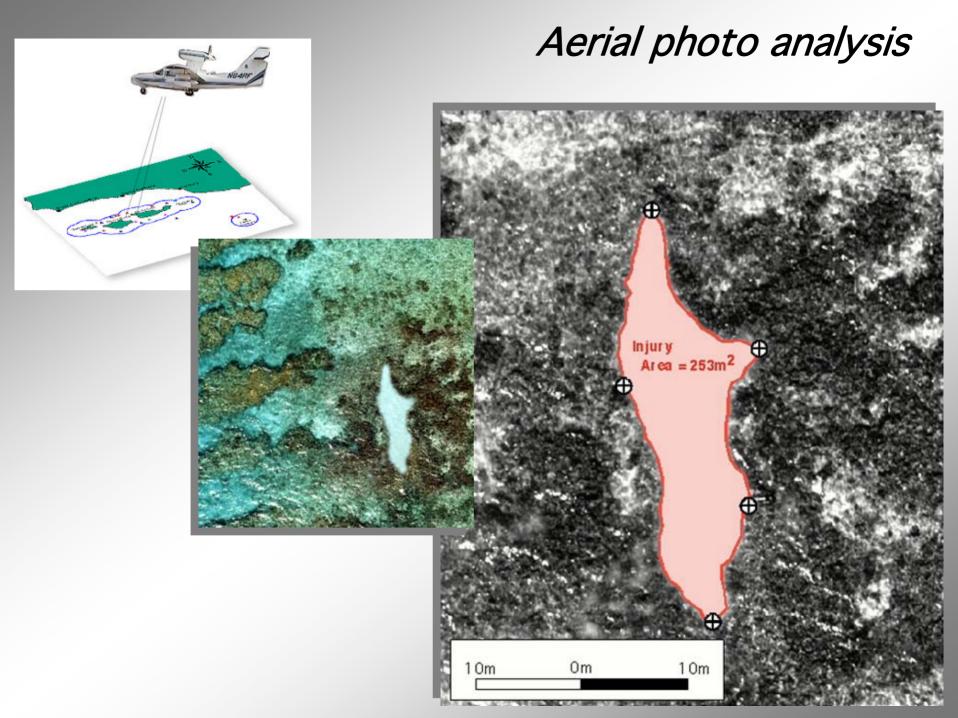
Video transect techniques


Point count analysis of single frame from video

Underwater positioning/mapping systems

M/V Casitas - NW Hawaiian Islands

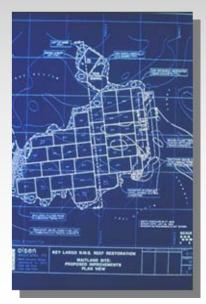
• AquaMap


Lift Bag or float attachment at top of the diver station. (page 7)

Weaving line through the diver station. (page 7)

• CobraTac

How to Plan an Effective Restoration Effort



• A thorough injury assessment is essential for planning

• Must be tailored to the injury (all same, all different)

• Guided by trustees' management plan/policies (eg., FKNMS Management Plan and Coral Restoration Programmatic Environmental Impact Statement)

• May include vessel debris/loose rubble removal

CORAL REEF AND HARD BOTTOM RESTORATION PLAN FLORIDA KEYS NATIONAL MARINE SANCTUARY MONROE COUNTY, FL

Prepared by:

National Oceanic and Atmospheric Administration Florida Department of Environmental Protection

1. INTRODUCTION

1.1 Common Coral Injuries

1.2 Economic and Ecological Importance of Coral

2. NATURAL RESOURCEDAMAGE ASSESSMENT & RESTORATION AUTHORITY

3. RESTORATION ALTERNATIVES

3.1 Restoration Techniques

3.1.1 No-Action

3.1.2 Emergency Stabilization

3.1.3 Framework and Rubble Stabilization

3.1.4 Structural Restoration

3.1.5 Coral Transplantation

3.2 Criteria for Restoration Alternatives

4. *NAME* GROUNDING and PREFERRED RESTORATION ALTERNATIVES

4.1 Grounding Site

4.2 Preferred Primary Restoration Alternatives

5. COMPENSATORY RESTORATION

5.1 Scaling Compensatory Restoration

5.1.1 Methods for Scaling Direct Human Use Losses

5.1.2 Method for Scaling Ecological Service Losses

5.2 Pooled Recoveries

5.3 Compensatory Restoration Alternatives

5.4 Preferred Compensatory Restoration Alternatives

6. MONITORING

6.1 Site Identification

- 6.2 Monitoring Variables and Methods
- 6.3 Preferred Monitoring Alternatives and Schedule

7. ENVIRONMENTAL REVIEW, SUPERVISION AND PERMITTING

7.1 Categorical Exclusion

7.2 Permitting

7.3 Supervision of Restoration Activities

8. RESTORATION AND MONITORING COSTS

8.1 Response, Damage Assessment, and Interest Costs

8.2 Primary Restoration, Monitoring, and Oversight Costs

8.3 Compensatory Restoration, Monitoring, Oversight Costs

8.4 Estimated Restoration and Monitoring Costs

Monitoring restoration:

•Monitoring plan developed by FKNMS monitoring biologists and 312 case team

- •Most monitoring conducted in house,
- •Although baseline monitoring may be performed by capable contractor upon completion of restoration project
- •Monitoring costs are part of total claim package

	contractor rates						
Year of restoration:					2006		
Number of square me							
Numer of square meter	ers restored per day						
				Price/			
Description	Participant / Item	Qty	Units	Unit	Cost		
Primary Restoration							
Mob/Demobilization	Sr. Scientist/Ops Manager		days				
	Scientific Diver		days				
Labor	Sr. Scientist/Ops Manager		days	\$1,398.25	\$0.00	\$1,306.80	1398.254
	Scientific Diver		days	\$918.05	\$0.00	\$858.00	918.0457
	Commercial Diver		days	\$861.55	\$0.00	\$805.20	861.5506
	Commercial Diver		days	\$861.55	\$0.00	\$805.20	861.5506
	Principal Supervisor		days	\$1,525.37	\$0.00	\$1,425.60	1525.368
Oversight	FKNMS Sr. Biologist		days	\$1,886.94	\$0.00	\$1,763.52	1886.937
Materials	Drill		each	\$141.83	\$0.00		
	Drill bits		box	\$94.54	\$0.00		
	Expansion bolts		each	\$2.10	\$0.00		
	Tags		each	\$3.15	\$0.00		
	Portland cement		square meter	\$44.37	\$0.00		
	Truck		day	\$157.59	\$0.00		
	Cement Mixer		day	\$105.06	\$0.00		
	DGPS Leica 941DX		day	\$157.59	\$0.00		
	Fathometer day \$131.33 Digital still camera day \$105.06	\$0.00					
		day	\$105.06	\$0.00			
	Underwater video system		day	\$262.66	\$0.00		
	Video tapes		each	\$5.66	\$0.00		
	Commercial dive equipment		person per day	\$315.19	\$0.00		
	Air compressor		day \$52.53 \$0.00				
	Scuba gear		per diver per day				
	Scuba tanks		per tank per day	\$8.41	\$0.00		
	Electric compressor scuba		day	\$157.59	\$0.00		
	28-ft boat		day	\$682.91	\$0.00		

Travel Distance		miles	\$0.485	\$0.00
Travel Time	Sr. Scientist/Ops Manager	days	\$1,398.25	\$0.00
	Scientific Diver	days	\$918.05	\$0.00
	Commercial Diver	days	\$861.55	\$0.00
	Commercial Diver	days	\$861.55	\$0.00
Lodging*	Sr. Scientist/Ops Manager	days		\$0.00
	Scientific Diver	days		\$0.00
	Commercial Diver	days		\$0.00
	Commercial Diver	days	_	\$0.00
Per diem	Sr. Scientist/Ops Manager	days	\$157.59	\$0.00
	Scientific Diver	days	\$157.59	\$0.00
	Commercial Diver	days	\$157.59	\$0.00
	Commercial Diver	days	\$157.59	\$0.00
		dujo	-	Q 0.00
			Subtotal	(
Primary Documen	tation			
Labor	Sr. Scientist/Ops Manager	days	\$1,306.80	\$0.00
	Scientific Diver	days	\$858.00	\$0.00
Oversight	FKNMS Sr. Biologist	days	\$1,763.52	\$0.00
Data Analysis	Principal	days	\$1,425.60	\$0.00
Figures	Operations Manager	days	\$1,306.80	\$0.00
Video	Survey Technician	days	\$858.00	\$0.00
Materials	Drill	each	\$141.83	\$0.00
	Drill bits	box	\$94.54	\$0.00
	Expansion bolts	each	\$2.10	\$0.00
	Tags	each	\$3.15	\$0.00
	DGPS Leica 941DX	day	\$157.59	\$0.00
	Scuba gear	per diver per day	\$26.27	\$0.00
	Scuba tanks	per tank per day	\$8.41	\$0.00
	Digital still camera	day	\$105.06	\$0.00
	Underwater video system	day	\$262.66	\$0.00
	Video tapes	each	\$5.66	\$0.00
	Electric compressor scuba	dav	\$157.59	\$0.00
	28-ft boat	day	\$682.91	\$0.00
Report Review	Principal	days	\$1,425.60	\$0.00
Computer Time		days	\$40.00	\$0.00
			Subtotal	(
* Lodging included	in per diem for contractors		Total:	\$0.00
			i uidi.	φ 0. 00

				Capt. Boneh		
		NRDA CLAIM SUMMARY				
Date of Incid	lent					
Location						
FWCC Citati		er				
Vessel Name						
Vessel Desc	-					
Vessel Owne	-					
Vessel Oper						
Total Area In						
Primary Res		-				
Compensato	ory Restor	ation Requ	ired?			
Response ar	nd Damag	e Assessm	ent Costs	(as of Date)		
				sment, and Inte		 \$0
S	State of Flo	rida Respon	se, Dama	ge Assessmen	t, and Interest	\$0
S	Subtotal Re	sponse. Da	mage Ass	essment, and l	nterest	\$0
Primary Res	toration,	Monitoring,	and Over	sight Costs		
-		ary Restora				\$0
		ary Monitori				\$0
		ary Oversig				÷-
		DAA Primary				 \$0
			00313			ψυ
Compensato	ny Restor	ation Moni	torina an	d Oversight C	osts	
-	-	pensatory R			10313	\$C
		pensatory N				\$C \$C
		pensatory R				\$C \$C
		• •	•			
S	Subtotal NC	DAA Compe	nsatory Co	sts		 \$0
						
TOTAL VALU	<u>UE OF N</u> O	AA and ST	<u>ATE OF F</u>	ORIDA CLAI	M (2005\$)	\$0

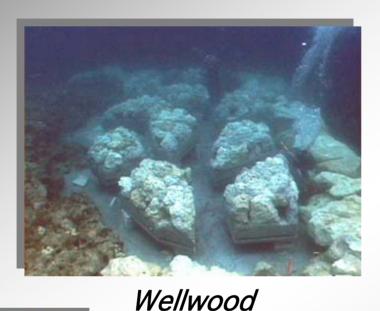
Restabilization of dislodged/fragmented coral colonies (simple reattachment)


M/V Adaro Grecian Rocks Reef August, 2003

Grounding track : Twin 38 meter long prop-dredged trenches across the reef crest; 193 m² area of impact Over 800 colonies of live coral dislodged by vessel grounding

Quarried limestone boulders of fossil coral material were used as backfill for trenches.

View of backfilled trench, left, and untouched trench filled with loose coral framework debris.

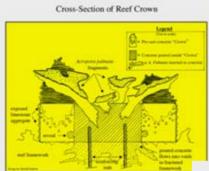


Two views of the final product

Replacement/recreation of impacted or destroyed reef framework structure

Elpis

Connected



Maitland

Houston

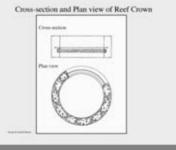
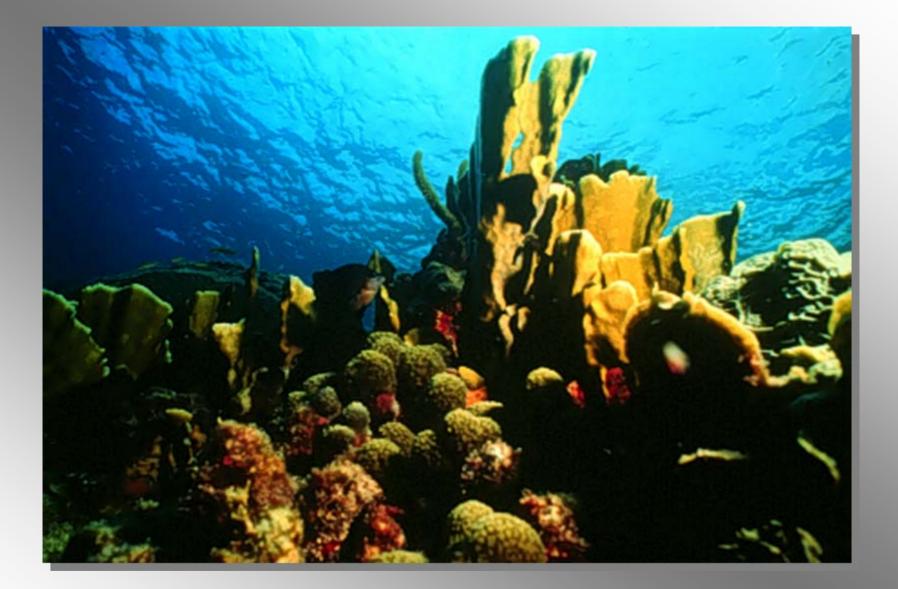
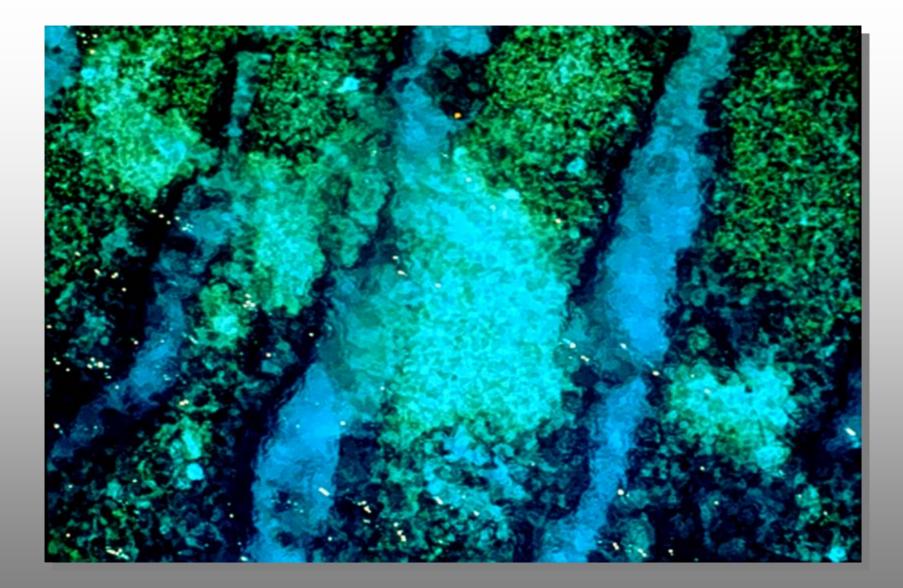
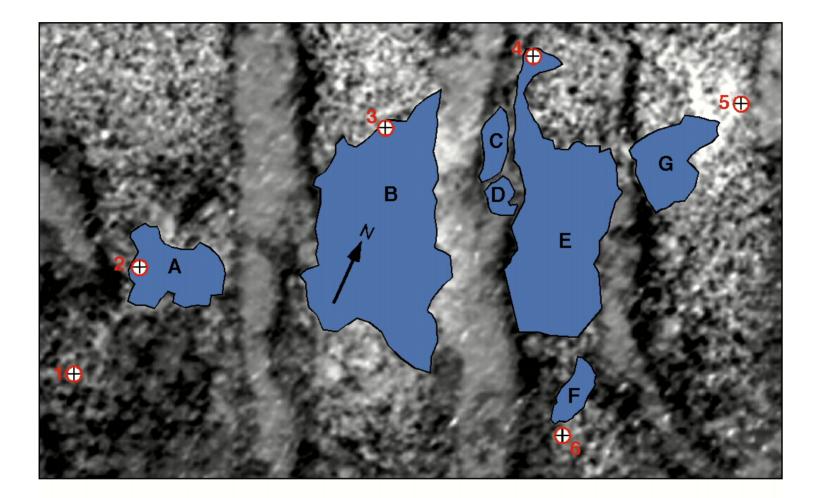
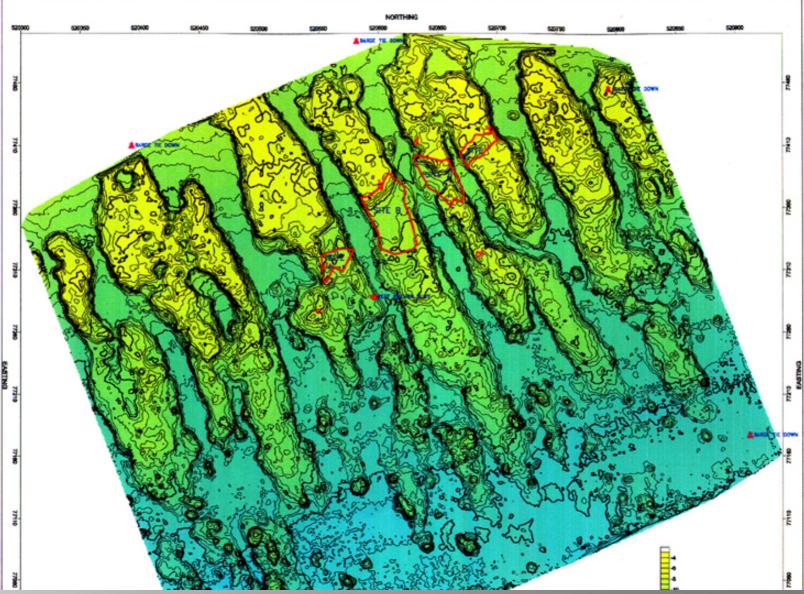



Photo of reef crown at Connected site, February, 2004 R/V Columbus Iselin 47 meter research vessel August 10, 1994 Looe Key Reef


Looe Key reef crest prior to grounding...


...and after


Aerial photo of Iselin grounding site

Aerial photo of Iselin site, digitized and injury scars outlined for quantification by CAD software

5m 0m 5m

LOOE KEY FLORIDA, ECHOSCAN MULTIBEAM SURVEY TWO-DIMENSIONAL PLAN VIEW

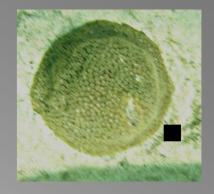
The Iselin grounding destroyed 345 square meters of living coral and 338 square meters of the reef framework, killing or displacing large numbers of hard corals, sea fans, sponges, fish and other marine creatures. This was further exacerbated by subsequent storm damage. Prior to primary structural restoration of the site, a doubling of the volume of reef structure lost due to excavation of weakened reef framework by storm-generated wave action (Hurricanes Georges and Mitch, 1998) was documented by FKNMS DARP staff.

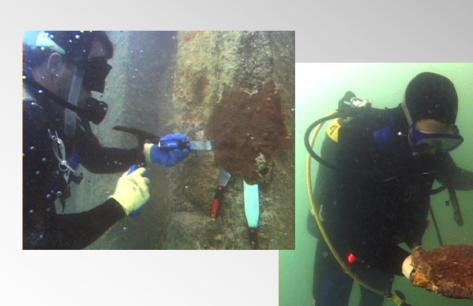
Iselin grounding site restoration

Boulder deployment

Iselin grounding site restoration

Grouted boulders





The finished product


Transplantation/Relocation of coral colonies into impacted site to expedite recolonization

Monitoring is an essential component of any major coral reef restoration effort...

